Nitric oxide synthase inhibition during synaptic maturation decreases synapsin I immunoreactivity in rat brain.

نویسندگان

  • Eduardo Sánchez-Islas
  • Martha León-Olea
چکیده

During the development of the brain, nitric oxide and synapsins, the latter being phosphoproteins associated to presynaptic membrane vesicles, are abundant in presynaptic terminals and play important and similar roles in neurotransmitter release, morphogenesis, synaptogenesis, and synaptic plasticity. These mechanisms are fundamental for neuronal development and plasticity and constitute important factors for the formation of neuroanatomical structures. Neural nitric oxide synthase (nNOS), synapsin I, and nNOS adapter protein (CAPON) constitute a ternary complex necessary for specific NO and synapsin functions at a presynaptic level. It is not known whether NO absence may affect the presence and/or activity of synapsins during brain development. To understand the role of NO in synaptogenesis, we studied the effects of NOS inhibition on synapsin I expression at a postnatal stage. Rat pups were treated with a competitive NOS antagonist, N-nitro-L-arginine methyl ester, from postnatal days 3 to 23. Control pups received exclusively an equivalent volume of saline solution. Histochemical and immunochemical techniques for NADPH-d and synapsin I, respectively, were carried out. NOS inhibition elicited a significant reduction in synapsin I immunoreactive density and NADPH-d activity in the brain in the analyzed areas-prefrontal cortex, hippocampus, and dorsal thalamus. These data show that the alterations originated by NO and synapsin deficiencies produce a diminution in synaptic density. Thus, functions that depend on the formation of synaptic connections such as learning and memory could be affected by NO deficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Immunophilin regulation of neurotransmitter release.

BACKGROUND The immunophilins are proteins that mediate actions of immunosuppressant drugs such as FK506 and cyclosporin A by binding to calcineurin, inhibiting its phosphatase activity, and increasing the phosphorylation level of transcription factors required for interleukin 2 formation. Though concentrations in the brain greatly exceed levels in immune tissues, no function has been previously...

متن کامل

The Effect of Dexamethasone on Expression of Inducible Nitric Oxide Synthase Gene During Liver Warm Ischemia-reperfusion in Rat

Background: Liver ischemia / reperfusion Injury (IRI) is one of the major causes of liver failure during various types of liver surgery, trauma and infections. The present study investigates the effect of dexsamethasone on the liver injury and inducible nitric oxide synthase gene expression during hepatic warm ischemia/reperfusion in rats. Materials and Methods: 24 male Wistar rats (200-250 g)...

متن کامل

Inhibition of nitric oxide synthase induces increased production of growth-associated protein 43 in the developing retina of the postnatal rat.

We investigated the effects of N(G)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, on retinal development in the postnatal rat by immunocytochemistry and immunoblotting using antisera against neuronal nitric oxide synthase (nNOS) or growth-associated protein 43 (GAP-43). An nNOS-immunoreactive band of 155 kDa and a GAP-43-immunoreactive band of 48 kDa were present in the extracts of b...

متن کامل

Effect of dexamethasone on the endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) genes expression during hepatic warm ischemia/reperfusion in rat

Background: Hepatic ischemia/reperfusion injury (I/RI) is a multifactorial pathophysiologic process which can lead to liver damage and dysfunction. This study examined the protective effect of dexamethasone on the gene expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) and on the liver tissue damage during warm hepatic I/R. Materials and Methods: A total of 32 mal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nitric oxide : biology and chemistry

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2004